Ping

[dentity.

OAuth 2.0
Developers Guide

Ping Identity, Inc. ®* 1001 17th Street, Suite 100, Denver, CO 80202 * 303.468.2900

Ping

OAuth 2.0 Developers Guide

Identit

yTM
CORPORATION

Table of Contents

Contents
TABLE OF CONTENTS...... 2
ABOUT THIS DOCUMENTuuttiiiiieeiiciitttteeeeestrteeeeeeesseetseeteeesasessssseeeesasssssssseeesasssssssseeseesssssssseseesssssssseees 3
GETTING STARTED 4
1 OVERVIEW S
1.1 OAUTH 2.0 OVERVIEW ..cciiiiiiiiiiiieeeeeiiittteeeeeesetsrteeeessssssssstessssssssssssessssssssssssseessssssssssssessssssssssseeeess 5
1.2 DEVELOPER CONSIDERATIONScciiiiiiiiieeieeee e e e e ee et et eeeeeeeee e e eatatatatasasasasaeseseeseseeeeeeereeeeaerareeaens 5
1.2.1 APPLicAtion DeVelOper..............ccccccueeiuiiiiuiieiie ittt ettt et sebeeeabee e 5
1.2.2 APIDEVEIOPEFccueeeeeie ettt ettt ettt b e enneas 6
APPLICATION DEVELOPER CONSIDERATIONS...... 7
2 GET A TOKEN.. 8
2.1 OAUTH 2.0 GRANT TYPES ...ttt ettt sttt e et et e et e bt et e e e ste e st emeentesseeseenseeseeneeneeeene 8
2.2 AUTHORIZATION CODE GRANTooiiiiiiiiieeeeeeeee ettt ettt aa e reeeeeeeeaeeereeeeeeaeeeeas 9
2.2.1 Client CONfIGUFATION.ceecueeeiieeiie ettt ettt e et et e st e et e eateeeseeessbeenssee e 10
2.2.2 Request authorization from user and retrieve authorization code...................cc.ccccovvvenurne. 10
2.2.3 Swap the authorization code for an Access tOKEN.c..cccceevvieiiieeiieiiieieieeee e, 11
2.3 IMPLICIT GRANTuuttittitteeesetirtteeeeessetrteeeeeaessassseeeeaaassessseeaesaasssssesaasessssssssseessssssssssseeeesssssssseeaens 13
2.3.1 Client CONfIGUFATION.cccueeeieieeiie ettt ettt ettt e et e bt e eateeesaeessbeenssee e 14
2.3.2 Request authorization from user and retrieve access tOKen................cccccoevcviiviiieniieninannnannn, 14
2.4 RESOURCE OWNER PASSWORD CREDENTIALS (ROPC) ...cccviiiiieiiieeiieeeee et 16
2.4.1 Client CONfIGUFATION.c..ceecueeeiieeiie e ettt ettt ettt et e e s bt e enteeenaeessbeenssee e 16
2.4.2 Request user authentication and retrieve AcCess tOKeMN...............ccccccvevvveeiiiiiniiianiieiieeeeeenen, 17
2.5 CLIENT CREDENTIALS ...iiiiiiettttttteeeiiettteteeeesssessseeeeessssssssessesassssssessesessssssssssessssssssssssesessssssssseesess 19
2.5.1 Client CONfIGUFATION.eccueeeiieeiie ettt ettt ettt e et e et eeateeesaeessbeennsee e 19
2.5.2 ReQUEST ACCESS TOKOI ...ttt ettt ettt et 20
2.6 EXTENSION GRANTS (I.LE. SAML BEARER).....cuuttiiiiiiiieciiiie et eeiteee et e e vt eeeiave e e eireeeeeavreeeenens 21
2.6.1 Client CONfIGUFATION.eecueeeiieeiie ettt ettt ettt et e et e e bt eeabeeeseeessbeenssee e 21
2.6.2 ReQUEST ACCESS TOKOI ...ttt ettt et e et e e e e 22
3 REFRESH A TOKEN..... 24
4 USE A TOKEN... 26
API DEVELOPER CONSIDERATIONS. ... 27
5 VALIDATE A TOKEN... 28
511 Client CORfIGUFAIION.cceeiiieiteit ettt ettt ettt ettt ettt et et 28
6 REFERENCES... 31

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

About this Document

This document provides a developer overview of the OAuth 2.0 protocol. It provides an overview of the
processes an application developer and an API developer need to consider to implement the OAuth 2.0
protocol.

Explanations and code examples are provided for "quick win" integration efforts. As such, they are
incomplete and meant to complement existing documentation and specifications.

This document assumes familiarity with the OAuth 2.0 protocol and PingFederate. For more
information about OAuth 2.0, refer to:

* PingFederate Administrator's Manual
e OAuth 2.0 RFC 6749

The samples described in this document use the OAuth2 Playground sample application available for
download from the products page on pingidentity.com.

Note: This document explains a number of manual processes to request and validate the OAuth
tokens. While the interactions are simple, PingFederate is compatible with many 3" party
OAuth client libraries that may simplify development effort.

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

Getting Started

Ping | den tl tym OAuth 2.0 Developers Guide

CORPORATION

1 Overview

1.1 OAuth 2.0 Overview

o,

L] Resource Server

PingFederate’

Protected API

Client

The OAuth 2.0 protocol uses a number of actors to achieve the main tasks of getting, validating, and
using an access token. These will be described, as well as optional steps of refreshing this access token.

The main actors involved are:

Actor Responsibility

User or Resource Owner The actual end user, responsible for authentication and to provide consent to share
their resources with the requesting client.

User Agent The user’s browser. Used for redirect-based flows where the user must
authenticate and optionally provide consent to share their resources.

Client The client application that is requesting an access token on behalf of the end user.

Authorization Server (AS) The PingFederate server that authenticates the user and/or client, issues access
tokens and tracks the access tokens throughout their lifetime.

Resource Server (RS) The target application or API that provides the requested resources. This actor will
validate an access token to provide authorization for the action.

1.2 Developer Considerations

1.2.1 Application Developer

The application developer will be responsible for the user-facing elements of the process. They will
need to authenticate the user and interface with the back-end APIs.

Ping | den tl tym OAuth 2.0 Developers Guide

CORPORATION

There are three main actions an application developer needs to handle to implement OAuth 2.0:

1. Getan access token
2. Use an access token
3. Refresh an access token (optional)

1.2.2 API Developer

The APl developer builds the API that the application talks to. This developer is concerned with the
protection of the API calls made and determining whether a user is authorized to make a specific API
call.

The OAuth 2.0 process an APl developer needs to handle is to:

1. Validate a token

Note: In some cases the “API Developer” may be using a service bus or authorization gateway to
manage access to APls, and therefore the task of validating the access token would be
shifted to this infrastructure.

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

Application Developer Considerations

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

2 Get a token

This section will explain how to get an OAuth2 access token (and optionally a refresh token) from the
PingFederate infrastructure.

2.1 OAuth 2.0 Grant Types

OAuth 2.0 provides four standard grant types and an extension grant type that can be used to customize
the authentication and authorization process depending on the application requirements.

Grant Type Use Cases

Authorization Code Used for most web and mobile application scenarios that want to call
REST web services.

Uses the user agent to transport an intermediate code, which is then
exchanged for the OAuth2 tokens.

Implicit Scenario where client is not able to safely hide the client secret (e.g.
clientside JavaScript application).

Uses the user agent to transport the OAuth2 tokens.

Resource Owner Password Credentials When application needs to control the login form (e.g. native mobile
app).
Exchanges a username/password combination for the OAuth2 tokens.

Client Credentials When a user is not involved. Access token only required for a service to
call a REST web service.

Exchanges the client credentials for an OAuth2 access token.

Extension Grant Used to extend the OAuth 2.0 grant types for specific scenarios (e.g.
the SAML bearer extension grant).

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

2.2 Authorization Code Grant

Authorization grant is a client redirect based flow. In this scenario, the user will be redirected to the
PingFederate authorization endpoint via the user agent (i.e. web browser). This user agent will be used
to authenticate the end user and allow them to grant access to the client (Step 1 below). Once the user
has been authorized, an intermediate code will be granted by the authorization server and returned to
the client application via the user agent (step 2). Lastly, the client will swap this code for an OAuth
access token (step 3).

PingFederate°

@

Protected API

Resource Server

Capability

Browser-based end user interaction Yes

Can use external IDP for authentication Yes

Requires client authentication No*

Requires client to have knowledge of user credentials No

Refresh token allowed Yes

Access token is in context of end user Yes

Note: Although the authorization code grant type does not require a client secret value, there are

security implications to exchanging a code for an access token without client authentication.

Ping | den tl tyw OAuth 2.0 Developers Guide

CORPORATION

2.2.1 Client Configuration

For the examples below, the following client information will be used:

Admin Label OAuth2 Parameter | Example Value
Client ID client_id ac_client
Client Authentication client_password 2Federate
Allowed Grant Types response_type Authorization Code
grant_type * response_type of “code”

* grant_type of “authorization_code”
Refresh Token

Redirect URIs redirect_uri sample://oauth2/code/cb
Scope Settings (in AS scope edit
settings) /

Restrict Scopes

2.2.2 Request authorization from user and retrieve authorization code

To initiate the process, the client application will redirect the user to the authorization endpoint. This
redirect will contain the applicable attributes URL encoded and included in the query string component
of the URL.

Using the above parameters as an example, the application will redirect the user to the following URL:

https://localhost:9031/as/authorization.ocauth2?
client id=ac_clienté

response_ type=codeé&

scope=edité&

redirect uri=sample%3A%2F%2Foauth2%2Fcode%2Fcb

This will initiate an authentication process using the browser (user agent). Once the user successfully
completes the authorization request, they will be redirected with an authorization code to the
redirect_uri value defined in the authorization request (if included) otherwise the user will be returned
to the redirect_uri defined when the client was configured.

Note: For mobile scenarios, the redirect_uri may be a custom URL scheme that will cause the code
to be returned to the native application.

Using the example above, a successful authorization request will result in the resource owner redirected
to the following URL with the authorization code included as a “code” query string parameter:

10

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

sample://oauth2/code/cb?code=XYZ%..123

Note: If the authorization request also included a “state” value, this will also be included on this
callback.
Note: An error condition from the authentication / authorization process will be returned to this

callback URI with “error” and “error_description” parameters.

The client will then extract the code value from the response and, optionally, verify that the state value
matches the value provided in the authorization request.

2.2.3 Swap the authorization code for an access token

The final step for the client is to swap the authorization code received in the previous step for an access
token that can be used to authorize access to resources. By limiting the exposure of the access token to
a direct HTTPS connection between the client application and the authorization endpoint, the risk of
exposing this access token to an unauthorized party is reduced.

For this to occur, the client makes a HTTP POST request to the token endpoint on the AS. This request
will use the following parameters sent in the body of the request:

Item Description

grant_type Required to be “authorization_code”

code The authorization code received in the previous step

redirect_uri If this was included in the authorization request, it MUST also be included

This request should also authenticate as the pre-configured client using either HTTP BASIC
authentication or by including the client_id and client_secret values in the request.

To retrieve the access token in the example, the following request will be made.

HTTP Request
POST https://localhost:9031/as/token.ocauth2 HTTP/1.1
Headers

Content-Type: application/x-www—form-urlencoded
Authorization: Basic YWNfY2xpZW500jJGZWR1cmF0ZQ==

Body

grant type=authorization codeé&code=XYZ7..123

A successful response to this message will result in a 200 OK HTTP response and the access token (and
optional refresh token) returned in a JSON structure in the body of the response.

11

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

HTTP Response
HTTP/1.1 200 OK

Headers

Content-Type: application/json;charset=UTF-8
Body

{

"access token":"zzz.yyy",

"token type":"Bearer",
"expires in":14400,
"refresh token":"123..789"
}

The application can now parse the access token and, if present, the refresh token to use for
authorization to resources. If a refresh token was returned, it can be used to refresh access token once
it expires.

12

Ping | den _l_l tym OAuth 2.0 Developers Guide

CORPORATION

2.3 Implicit Grant

The implicit grant is similar to an authorization code grant, however the user agent will receive an access
token directly from an authorization request (rather than swapping an intermediate authorization code).

In this flow, the user requests authentication and authorization via the user agent (step 1 below). If
authorized, the authorization server will redirect the user to a URL containing the access token in a URL
fragment. The client can then parse this from the URL (step 2) to use for requests to protected
resources.

PingFederate’

CTTT—

Protected API

Resource Server

This grant type is suitable for clients that are unable to keep a secret (i.e. client-side applications like
JavaScript). The client is “mapped” to the authorization server via the redirect_uri, as there is no client
secret to authenticate the client, the access token will be sent to a specific URL pre-negotiated between
the client and the authorization server.

As the access token is provided to the client in the request URI, it is inherently less secure than the

authorization code grant type. For this reason, an implicit grant type cannot take advantage of refresh
tokens. Only access tokens can be provided via this grant type.

13

Pingldentity”

CORPORATION

OAuth 2.0 Developers Guide

Capability

Browser-based end user interaction Yes
Can use external IDP for authentication Yes
Requires client authentication No
Requires client to have knowledge of user credentials No
Refresh token allowed No
Access token is in context of end user Yes

2.3.1 Client Configuration

For the examples below, the following client information will be used:

Admin Label OAuth2 Parameter | Example Value
Client ID client_id im_client
Client Authentication client_password None
Allowed Grant Types response_type Implicit
* response_type of “token”
Redirect URIs redirect_uri sample://oauth2/implicit/cb
Scope Settings (in AS scope edit
settings) /
Restrict Scopes

2.3.2 Request authorization from user and retrieve access token

To initiate the process, the client application will redirect the user to the authorization endpoint. This
redirect will contain the applicable attributes URL encoded and included in the query string component

of the URL.

Using the above parameters as an example, the application will redirect the user to the following URL:

https://localhost:9031/as/authorization.oauth2?

client id=im clienté&
response type=tokené&
scope=edité&

redirect uri=sample%3A%2F%2Foauth2%2Fimplicit%2Fcb

14

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

This will initiate an authentication process using the browser (user agent). Once the user has
authenticated and approved the authorization request, they will be redirected to the configured URI
with the access token included as a fragment of the URL. A refresh token will NOT be returned to the
client:

sample://ocauth2/implicit/cb#
access token=zzz...yyyé&
token type=bearers

expires in=14400

Note: For mobile scenarios, the redirect_uri may be a custom URL scheme, which will cause the
access token to be returned to the native application.

Note: The implicit response is returned via a URL fragment. The fragment is only visible from
client-side code. Therefore if you need to parse the values from server-side code, you must
post the values to the server for parsing.

The application can now parse the access token from the URL fragment to use for authorization to API’s.

15

Ping |dent|t OAuth 2.0 Developers Guide

CORPORATION

2.4 Resource Owner Password Credentials (ROPC)

The ROPC grant type can be used in scenarios where an interactive user agent is not available, where
specific design requirements warrant the use of a native application login interface, or for legacy
reasons (i.e. retro-fitting a login form for OAuth2). In the ROPC grant type, the client captures the user
credentials (step 1 below) and uses those credentials to swap for an access token (step 2).

PingFederate’
(=
J 2/

User gy

Protected API

\:2 Resource Server

Client

Capability

Browser-based end user interaction No
Can use external IDP for authentication No
Requires client authentication No
Requires client to have knowledge of user credentials Yes
Refresh token allowed Yes
Access token is in context of end user Yes

2.4.1 Client Configuration

For the examples below, the following client information will be used:

16

Pingldentity”

CORPORATION

OAuth 2.0 Developers Guide

Admin Label OAuth2 Parameter | Example Value
Client ID client_id ro_client
Client Authentication client_password 2Federate

Allowed Grant Types grant_type

Resource Owner Password Credentials
* grant_type of “password”
Refresh Token

Scope Settings (in AS scope

settings) /

Restrict Scopes

edit

2.4.2 Request user authentication and retrieve access token

At this stage, the client displays a login form to the user and collects the credentials (e.g.
username/password) and defined scope if required from the resource owner (user) and makes a HTTP
POST to the token endpoint.

For the example below, the following credentials were received by the client and are used to request an
access token:

Credential Value

username joe

password 2Federate

Note: The credentials passed via the Resource Owner Password Credential flow are processed

through a PingFederate Password Credential Validator. These credentials do not have to be
a username and password, they could be for example a username / PIN combination or
another credential that is validated by a PCV.

HTTP Request

POST https://localhost:9031/as/token.oauth2 HTTP/1.1

Headers

Content-Type:

Authorization:

Body

grant type=password&username=joe&password=2Federate&scope=edit

application/x-www-form-urlencoded
Basic cm9fY2xpZW500])JGZWR1cmF0ZQ==

If successful, the client will receive a 200 OK response to this request and the access token (and optional
refresh token) will be returned in a JSON structure:

17

M OAuth 2.0 Developers Guide

Pingldentity’

CORPORATION

HTTP Response
HTTP/1.1 200 OK

Headers

Content-Type: application/json;charset=UTF-8
Body

{

"access token":"zzz.yyy",

"token type":"Bearer",
"expires in":14400,
"refresh token":"123..789"
}

Note: An error condition from the authentication / authorization process will be returned to this
callback URI with “error” and “error_description” parameters.

The application can now parse the access token and, if present, the refresh token to use for
authorization to resources. If a refresh token was returned, it can be used to refresh the access token
once it expires.

18

Ping Iden.tlt ™ OAuth 2.0 Developers Guide
COR PORATIONy

2.5 Client Credentials

The client credentials type works in a similar way to the ROPC grant type and is used to provide an

access token to a client based on the credentials or the client, not the resource owner. In this grant
type, the client credentials are swapped for an access token (step 1 below).

GO PingFederate’
User 2 @
. Protected API
L

Client

Capability

Browser-based end user interaction No
Can use external IDP for authentication No
Requires client authentication Yes
Requires client to have knowledge of user credentials No
Refresh token allowed No
Access token is in context of end user No

2.5.1 Client Configuration

For the examples below, the following client information will be used:

19

Ping | den tl tym OAuth 2.0 Developers Guide

CORPORATION

Admin Label OAuth2 Parameter Example Value
Client ID client_id cc_client

Client Authentication client_password 2Federate
Allowed Grant Types grant_type Client Credentials

* grant_type of “client_credentials”

Scope Settings (in AS scope edit
settings) /

Restrict Scopes

2.5.2 Request access token

The client makes a request (HTTP POST) to the token endpoint with the client credentials presented as
HTTP Basic authentication:

HTTP Request
POST https://localhost:9031/as/token.oauth2 HTTP/1.1

Headers

Content-Type: application/x-www—form-urlencoded
Authorization: Basic Y2NfY2xpZW500])JGZWR1cmF0ZQ==
Body

grant type=client credentialsé&scope=edit

Note: The client credentials can also be provided using the client_id and client_secret parameters
in the contents of the POST.

The client will receive a response to this request. If successful, a 200 OK response will be received and
the access token will be returned in a JSON structure. A refresh token will NOT be returned to the client.

HTTP Response
HTTP/1.1 200 OK

Headers

Content-Type: application/json;charset=UTF-8
Body

{

"access token":"zzz.yyy",

"token type":"Bearer",
"expires in":14400,

}

20

Ping |dent|t OAuth 2.0 Developers Guide

CORPORATION

2.6 Extension grants (i.e. SAML Bearer)

The extension grant type provides support for additional grant types extending the OAuth2.0
specifications. An example is the use of the SAML 2.0 Bearer extension grant. In this grant type, a SAML
assertion (indicated by step 1 below, however the process used to acquire this SAML assertion is out of
scope of this document) can be exchanged for an OAuth 2.0 access token (step 2).

.A\ PingFederate’

User ooy

(4- &
L'> . @ Protected API

Gion

Capability

Browser-based end user interaction No*1
Can use external IDP for authentication Yes*2
Requires client authentication No
Requires client to have knowledge of user credentials No
Refresh token allowed No
Access token is in context of end user Maybe*3

*1 — Although the grant type doesn’t allow for user interaction, the process to generate the SAML
assertion used in this flow can involve user interaction.

*2 — As long as the PingFederate AS is able to verify the SAML assertion, this assertion can be generated
from a foreign STS.

*3 — Access token will be in the context of the subject of the SAML assertion, which may be an end-user
a service or the client itself.

2.6.1 Client Configuration

For the examples below, the following client information will be used:

21

Ping | den tl tyw OAuth 2.0 Developers Guide

CORPORATION

Admin Label OAuth2 Parameter Example Value
Client ID client_id saml_client
Client Authentication client_password 2Federate
Allowed Grant Types grant_type Extension Grants
* grant_type of “urn:ietf:params:oauth:grant-type:saml2-
bearer”
Scope Settings (in AS scope edit
settings) /

Restrict Scopes

2.6.2 Request access token

At this stage, the client has a SAML assertion that it needs to exchange for an OAuth 2.0 access token.
The process in which the client received the assertion is out of scope (i.e. bootstrap assertion, STS token
exchange); however, the client would Base64 URL encode the assertion and include it in a HTTP POST to
the token endpoint.

For the example below, the following SAML assertion (abbreviated for readability) was received by the
client and is used to request an access token:

PHNhbWw60XNzZXJ0aWOuIE1IEPSJTAXdCSDAiQjM3cWVmTOtycmlaZzkc3Y09H
ZUMiIE1zc3V1SW5zdGFudDO0iMjAxXNCOwWMyOxMFQOxNJj0o1lMjoz0OS43NTRaIiBW

UmVmPjwvc2FtbDpBdXRobkNvbnR1eHQ-PC9zYW1sOkF1dGhuU3RhdGVLZW50
Pjwvc2FtbDpBc3NlcnRpb24 -

HTTP Request
POST https://localhost:9031/as/token.oauth2 HTTP/1.1

Headers

Content-Type: application/x-www—form-urlencoded
Authorization: Basic c2FtbF9jbGllbnQ6MkZ1ZGVyYXR1
Body

grant type=urn:ietf:params:ocauth:grant-type:saml2-bearer&assertion=
PHNhbWw6QXNzZXJ0aWIuIE1EPSJTAXdCSDAiQjM3cWVmTOtycmlaZzkc3Y0O9HZUMIIEL1Zzc3V1SW5zd
GFudD0iMjAxXNCOwMyOxMFQxNj01MjozOS43NTRaIiBW. . .UmVmPjwvc2FtbDpBdXRobkNvbnR1eHQ
-PC9zYW1sOkF1dGhuU3RhdAGVtZW50Pjwvc2FtbDpBc3NlcnRpb24-&scope=edit

Note: The client credentials can also be provided using the client_id and client_secret parameters
in the contents of the POST.

The client will receive a response to this request. If successful, a 200 OK response will be received and
the access token will be returned in a JSON structure. A refresh token will NOT be returned to the client.

22

Ping | den t_l tym OAuth 2.0 Developers Guide

CORPORATION

HTTP Response
HTTP/1.1 200 OK

Headers

Content-Type: application/json;charset=UTF-8
Body

{

"access token":"zzz.yyy",

"token type":"Bearer",
"expires in":14400,

}

23

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

3 Refresh a token

If a refresh token was requested along with the access token, then the refresh token can be used to
request a new access token without having to ask the user to re-authenticate. If the refresh token is still
valid, then a new access token and refresh token will be returned to the client.

If the refresh token has been invalidated for any reason, then the client must require the user to re-
authenticate to retrieve a new access token. The reasons for refresh tokens becoming invalid are:

* Refresh token has expired;
* Refresh token has been administratively revoked (separation / security reasons);
* User has explicitly revoked the refresh token

To refresh a token, the access token must have been requested with a grant type that supports refresh
tokens (authorization code or resource owner password credentials). A request will then be made to
the token endpoint with the grant_type parameter set to “refresh_token”.

Note: A new access token can be requested with a scope of equal or lesser value than the original
access token request. Refreshing an access token with additional scopes will return an error.
If the scope parameter is omitted, then access token will be valid for the original request
scope.

For this example, the authorization code client from above will be used to refresh the token

Admin Label OAuth2 Parameter | Example Value
Client ID client_id ac_client
Client Authentication client_password 2Federate
Allowed Grant Types response_type Authorization Code
grant_type * response_type of “code”

”

* grant_type of “authorization_code
Refresh Token

Redirect URIs redirect_uri sample://oauth2/code/cb
Scope Settings (in AS scope edit
settings) /

Restrict Scopes

Refresh Token refresh_token 123...789

The following request is made by the client:

24

Ping | den tl tym OAuth 2.0 Developers Guide

CORPORATION

HTTP Request
POST https://localhost:9031/as/token.oauth2 HTTP/1.1

Headers

Content-Type: application/x-www—form-urlencoded
Authorization: Basic YWNfY2xpZW500jJGZWR1cmF0ZQ==
Body

grant type=refresh token&refresh token=123..789

Note: A token can only be refreshed with the same or a lesser scope than the original token
issued. If the token is being refreshed with the same scope as the original request, the
scope parameter can be omitted. If a greater scope is required, the client must re-
authenticate the user.

A successful response to this message will result in a 200 OK HTTP response and the following JSON
structure in the body of the response:

HTTP Response
HTTP/1.1 200 OK

Headers

Content-Type: application/json;charset=UTF-8
Body

{

"access token":"aaa..ccc",

"token type":"Bearer",
"expires in":14400,
"refresh token":"456..321"
}

Note: Depending on the PingFederate configuration, the client could be configured to roll the
refresh token returned from a refresh token request. i.e. a new refresh token is returned
and the original refresh token is invalidated.

25

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

4 Use an access token

An access token can then be used as an authorization token (not to be confused with the authorization
code in the authorization code grant type) to configured web services. To use an access token to access
a protected resource, the access token must be passed to the resource server.

The client should use a bearer authorization method as defined in RFC 6750 to present the access token
to the resource. The most common approach is to use the HTTP Authorization header and include the
access token as a Bearer authorization credential; however, RFC 6750 also defines mechanisms for
presenting an access token via query string and in a post body.

In the diagram below, the client presents the OAuth 2.0 access token to the protected resource (step 1).
The resource then validates the access token before returning the requested resource (if authorized).

PingFederate’ 41
.
W &

. Protected API J

D
For example, to enact a GET request on a REST web service, given an access token “AAA...ZZZ", the client

makes the following HTTP request:

HTTP Request

GET https://api.company.com/user HTTP/1.1
Headers

Authorization: Bearer AAA...ZZ7Z

Body

<N/A>

This will provide the access token to the resource server, which can then validate the token, verify the
scope or the request, the identity of the resource owner and the client and perform the appropriate
action if authorized.

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

API Developer Considerations

27

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

5 Validate a token

For an APl developer to integrate with OAuth 2.0, the resource must accept and validate the OAuth 2.0
access token (step 1 below). Once the token has been received, the resource can then validate the
access token against the PingFederate authorization server (step 2). The response from the access
token validation will include attributes that the resource can use for authorization decisions.

& _—_—3
&
k

'@ I Protected API . ,
i

Note: This section will demonstrate the manual method of validating an access token through
code. This effort could also be handled by an API gateway / service bus architecture.

Note: The OAuth 2.0 specifications do not define a standard mechanism for access token
validation. = The process described in this section is specific to a PingFederate
implementation.

5.1.1 Client Configuration

For the examples below, the following client information will be used:

Admin Label OAuth2 Parameter Example Value

Client ID client_id rs_client

Client Authentication client_password 2Federate

Allowed Grant Types grant_type Access Token Validation (Client is a Resource Server)

* grant_type of
“urn:pingidentity.com:oauth2:grant_type:validate_bea

”

rer

28

Ping | den tl tyw OAuth 2.0 Developers Guide

CORPORATION

The API first needs to receive the access token from the client; this process will involve parsing the token
via a process defined in RFC6750. See section 4 “Use an access token” above.

A request from a client would look similar to the following:

HTTP Request

GET https://api.company.com/user HTTP/1.1
Headers

Authorization: Bearer AAA...ZZ7Z

Body

<N/A>

In order to fulfill the request, the API first extracts the access token from the authorization header, then
gueries the token endpoint of the PingFederate AS to validate the token:

HTTP Request
POST https://localhost:9031/as/token.oauth2 HTTP/1.1

Headers

Content-Type: application/x-www—form-urlencoded
Authorization: Basic cnNfY2xpZW500)JGZWR1cmF0ZQ==
Body

grant type=urn:pingidentity.com:ocauth2:grant type:validate bearer&token=AAA..
NYAVA

A successful response to this message will result in a 200 OK HTTP response and a JSON structure in the
body of the response similar to the following:

HTTP Response
HTTP/1.1 200 OK

Headers

Content-Type: application/json;charset=UTF-8
Body

{

"access token": { "role":”all access” },

"token type":"Bearer",
"expires in":14400,
"scope":"edit",

"client id":"ac client"

}

29

OAuth 2.0 Developers Guide

Pingldentity”

CORPORATION

The resource server can then use this information to make an authorization decision and allow or deny
the web request.

30

Pingldentity”

CORPORATION

6 References

OAuth 2.0 Developers Guide

OAuth2 specifications & information
http://oauth.net/2

PingFederate Admin Guide
http://documentation.pingidentity.com/display/LP/Product+Documentation

Ping Identity Products and Downloads
https://www.pingidentity.com/support-and-downloads/

31

